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Abstract

Optimization-oriented reduced-order models should target a particular output functional, span an applicable range of
dynamic and parametric inputs, and respect the underlying governing equations of the system. To achieve this goal, we
present an approach for determining a projection basis that uses a goal-oriented, model-constrained optimization frame-
work. The mathematical framework permits consideration of general dynamical systems with general parametric
variations and is applicable to both linear and nonlinear systems. Results for a simple linear model problem of the
two-dimensional heat equation demonstrate the ability of the goal-oriented approach to target a particular output func-
tional of interest. Application of the methodology to a more challenging example of a subsonic blade row governed by the
unsteady Euler flow equations shows a significant advantage of the new method over the proper orthogonal
decomposition.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Model reduction entails the systematic generation of cost-efficient representations of large-scale systems
that result, for example, from discretization of partial differential equations (PDEs). The task of determining
these representations may be posed as an optimization problem: determine the reduced model that provides
the optimal representation (with respect to some quantity of interest) of the large-scale system behavior. For
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very large systems, determination of the best reduced model via direct optimization has not been pursued, due
to challenges in solving the resulting optimization problem. Instead, several reduction methods have been
developed that trade-off optimality for tractability, and these have been applied in many different settings with
considerable success, including controls, fluid dynamics, structural dynamics, and circuit design. However, a
number of open issues remain with these methods, including the reliability of reduction techniques, guarantees
associated with the quality of the reduced models, and the generation of reduced models that are suitable for
optimal design, optimal control and inverse problem applications.

Recent advances in scalable algorithms for large-scale optimization of systems governed by PDEs have per-
mitted solution of problems with millions of state and optimization variables [1,2]. The problem of determin-
ing a reduced model can be cast in a similar model-constrained optimization framework. In particular, we
consider a goal-oriented formulation in which the reduced model is chosen to optimally represent a particular
output functional. Whereas other large-scale reduction methods, such as the proper orthogonal decomposition
(POD), are purely data-driven and do not consider the underlying equations, our model-constrained optimiza-
tion approach enforces the reduced-order governing equations as constraints. This improves on a data-driven
approach by bringing additional knowledge of the reduced-order governing equations into the construction of
the basis.

Most large-scale model reduction frameworks are based on a projection approach, which can be described
in general terms as follows. Consider the general linear, time-invariant (LTI) dynamical system
M _uþ Ku ¼ f ; ð1Þ
g ¼ Cu; ð2Þ
with initial condition
uð0Þ ¼ u0; ð3Þ

where uðtÞ 2 RN is the system state, _uðtÞ is the derivative of u(t) with respect to time, and the vector u0 contains
the specified initial state. In general, we are interested in systems of the form (1) that result from spatial dis-
cretization of PDEs. In this case, the dimension of the system, N, is very large and the matrices M 2 RN�N and
K 2 RN�N result from the chosen spatial discretization method. The vector f ðtÞ 2 RN defines the input to the
system and the matrix C 2 RQ�N defines the Q outputs of interest, which are contained in the output vector
g(t). A reduced-order model of (1)–(3) can be derived by assuming that the state u(t) is represented as a linear
combination of m basis vectors,
û ¼ Ua; ð4Þ

where ûðtÞ is the reduced model approximation of the state u(t) and m� N. The projection matrix
U 2 RN�m contains as columns the basis vectors /i, i.e., U = [/1 /2 � � � /m], and the vector aðtÞ 2 Rm con-
tains the corresponding modal amplitudes. This yields the reduced-order model with state a(t) and output
ĝ(t)
M̂ _aþ K̂a ¼ f̂ ; ð5Þ
ĝ ¼ Ĉa; ð6Þ
M̂a0 ¼ UTMu0; ð7Þ
where M̂ ¼ UTMU, K̂ ¼ UTKU, f̂ ¼ UTf , Ĉ ¼ CU, and a0 = a(0).
Projection-based model reduction techniques seek to find a basis U so that the reduced system (5)–(7) pro-

vides an accurate representation of the large-scale system (1)–(3) over the desired range of inputs. An optimal
reduced model can be defined as one that minimizes the H-infinity norm of the difference between the reduced
and original system transfer functions; however, no polynomial-time algorithm is known to achieve this goal.
Algorithms such as optimal Hankel model reduction [3–5] and balanced truncation [6] have been used widely
throughout the controls community to generate suboptimal reduced models with strong guarantees of quality.
These algorithms can be carried out in polynomial time; however, the computational requirements make them
impractical for application to large systems such as those arising from the discretization of PDEs, for which
system orders typically exceed 104.
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While considerable effort has been applied in recent years towards development of algorithms that extend
balanced truncation to large-scale LTI systems [7–9], efficient algorithms for very large systems remain a chal-
lenge. In addition, application of balanced truncation methods to systems that are linear time-varying or have
parametric variation has been limited to small systems [10,11]. The proper orthogonal decomposition (POD)
[12–14] has emerged as a popular alternative for reduction of very large dynamical systems; however, it lacks
the quality guarantees of methods such as balanced truncation.

Optimal design, optimal control and inverse problem applications present additional challenges for model
reduction methods. In such cases—where the physical system must be simulated repeatedly—the availability
of reduced models can greatly facilitate solution of the optimization problem, particularly for real-time and/or
large-scale applications. To be useful for optimization purposes, the reduced model must provide an accurate
representation of the high-fidelity model over a wide range of parameters. In particular, discretization pro-
duces high-dimensional input spaces when the input parameters represent continuous fields (such as initial
conditions, boundary conditions, distributed source terms, and heterogeneous material fields). Model reduc-
tion for high-dimensional input spaces remains a challenging problem. Approaches developed for dynamical
systems, such as POD and Krylov-based methods, have been applied in an optimization context [15–17]; how-
ever, the number of parameters in the optimization application was small. In recent work for steady-state
problems, methods are presented for constructing reduced models that are of guaranteed quality over a range
of inputs via the use of error estimates and adaptivity [18].

In this paper, we formulate the task of determining a projection basis as a goal-oriented, model-con-
strained optimization problem. The mathematical framework permits consideration of general dynamical sys-
tems with general parametric variations and is applicable to both linear and nonlinear systems. We propose
an efficient solution strategy that borrows concepts from the POD and employs recent methods for optimi-
zation of systems governed by PDEs to make the approach tractable for large-scale problems. We begin with
a description of the general dynamical system framework with parametric variations. This is followed by a
description of the goal-oriented basis optimization formulation and the proposed model reduction method-
ology. The approach is then demonstrated with two examples. The first is a simple linear model problem that
considers the unsteady two-dimensional heat equation with parametrically varying boundary control inputs.
The second is a more complicated example that considers the two-dimensional linearized Euler equations gov-
erning the unsteady motion of a subsonic blade row. Finally, we present conclusions and directions for future
research.
2. Dynamical system framework

The standard LTI system framework is defined by (1)–(3). In this section, we present the more general case
that includes parametric variation in the system. An overview of the existing POD method of snapshots, a
commonly used approach to define the reduced basis, is described.

2.1. Parametric input variations

We consider a finite set of instantiations of the governing equations (1)–(3) that could arise from variations
in the coefficient matrices M and K, the input f, or the initial state u0. For example, where (1)–(3) represent a
spatially discretized PDE, these variations stem from changes in the domain shape, boundary conditions, coef-
ficients, initial conditions, or distributed sources of the underlying PDEs. The general dynamical system for S

different instances is thus written
Mk _uk þ Kkuk ¼ f k; k ¼ 1; . . . ; S; ð8Þ
ukð0Þ ¼ uk

0; k ¼ 1; . . . ; S; ð9Þ
gk ¼ Ckuk; k ¼ 1; . . . ; S; ð10Þ
where the superscript k denotes the kth instance of the system, with corresponding state uk(t) and output gk(t).
Using the projection framework described in the previous section, a reduced-order model of (8)–(10) is

obtained as
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M̂k _ak þ K̂kak ¼ f̂ k; k ¼ 1; . . . ; S; ð11Þ
ĝk ¼ Ĉkak; k ¼ 1; . . . ; S; ð12Þ
M̂kak

0 ¼ UTMkuk
0; k ¼ 1; . . . ; S; ð13Þ
where M̂k ¼ UTMkU, K̂k ¼ UTKkU, f̂ k ¼ UTf k, and Ĉk ¼ CkU.

2.2. Proper orthogonal decomposition

POD is a widely used approach to determine the reduced basis U. POD can be applied efficiently to large
systems using the method of snapshots [12] as follows. Consider the collection of ‘‘snapshots’’, uk(tj),
j = 1, . . . ,T, k = 1, . . . ,S, where ukðtjÞ 2 RN is the solution of the governing equations (8) at time tj for param-
eter instance k. T time instants are considered for each parameter instance, yielding a total of ST snapshots.
We define the snapshot matrix U 2 RN�ST as
U ¼ ½u1ðt1Þu1ðt2Þ � � � u1ðtT Þu2ðt1Þ � � � uSðtT Þ�; ð14Þ
and we will refer to the ith column of U as the ith snapshot, denoted by Ui.
The POD basis vectors are chosen to be the orthonormal set that solves the optimization problem [19]
/ ¼ arg max
u

hjðu;uÞj2i
ðu;uÞ ; ð15Þ
where (u,u) denotes the scalar product of the vector u with the field u(t) evaluated over the domain, and Æ æ
represents a time-averaging operation. In the case of the discrete snapshots contained in U, (15) is maximized
when the m basis vectors are chosen to be the first m left singular vectors of U. For a fixed basis size, the POD
basis therefore minimizes the error between the original snapshots and their representation in the reduced
space defined by
E ¼
XS

k¼1

XT

j¼1

½ukðtjÞ � ~ukðtjÞ�T½ukðtjÞ � ~ukðtjÞ�; ð16Þ
where ~ukðtjÞ ¼ UUTukðtjÞ. This error is equal to the sum of the squares of the singular values corresponding to
those singular vectors not included in the basis,
E ¼
XST

i¼mþ1

r2
i ; ð17Þ
where ri is the ith singular value of U.
The POD is an optimal basis in the sense that it minimizes the data reconstruction error given by (16); how-

ever, it is important to note that this optimality applies only to the representation of a known state solution
uk(tj) in the reduced space, i.e. ~u is computed as ~ukðtjÞ ¼ UUTukðtjÞ, not by solution of the reduced model
ð~u 6¼ ûÞ. Therefore, the error expression does not apply to the resulting POD reduced-order model (5). In par-
ticular, the error expression yields no rigorous information regarding the accuracy of the solution of the
reduced model and thus whether û is a good approximation of u. Moreover, the POD basis does not account
for the system outputs, although methods to augment the standard approach have been proposed that use
adjoint information [20,21]. In addition, because no information regarding the governing equations is included
in the POD process, the POD basis does not properly reflect the fact that the snapshots uk(tj) are associated
with different parametric instances of the system.

In the following section we present an alternative method to determine the reduced-space basis. This
method seeks to minimize an error similar in form to (16). However, we will improve upon the POD, first,
by minimizing the error in the outputs (as opposed to states) and, second, by imposing additional con-
straints that ûkðtÞ should result from satisfying the reduced-order governing equations for each parameter
instance k.
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3. Optimized reduced-order basis

3.1. Constrained optimization formulation for projection basis

We pose the problem of selecting the basis U as a goal-oriented optimization problem that seeks to mini-
mize the difference between the full-space and reduced-order output solution over a selected set of inputs and
the interval (0, tf), subject to satisfying the underlying governing equations. The problem of determining the
optimal basis, U 2 RN�m, can be written as
min
U;a

G ¼ 1

2

XS

k¼1

Z tf

0

ðgk � ĝkÞTðgk � ĝkÞdt þ b
2

Xm

j¼1

ð1� /T
j /jÞ

2 þ b
2

Xm

i;j¼1
i6¼j

ð/T
i /jÞ

2 ð18Þ

subject to UTMkU _ak þ UTKkUak ¼ UTf k; k ¼ 1; . . . ; S; ð19Þ
UTMkUak

0 ¼ UTMkuk
0; k ¼ 1; . . . ; S; ð20Þ

ĝk ¼ CkUak; k ¼ 1; . . . ; S: ð21Þ
In the case of a linear relationship between outputs and state as in (10), the objective function can be written
G ¼ 1

2

XS

k¼1

Z tf

0

ðuk � ûkÞTH kðuk � ûkÞdt þ b
2

Xm

j¼1

ð1� /T
j /jÞ

2 þ b
2

Xm

i;j¼1
i 6¼j

ð/T
i /jÞ

2
; ð22Þ
where Hk = CkTCk can be interpreted as a weighting matrix that defines the states relevant to the specified
output. While the first term in the objective function (22) has similarities with that minimized by the POD,
given by (16), there are two important distinctions to note. First, the goal-oriented nature of the formulation
(22) focuses on reduction of the error for a particular output functional rather than for the general state vec-
tor. Second, through the constraints (19)–(21), the optimization approach requires satisfaction of the reduced-
order governing equations to determine û. The error minimized by the optimization approach is thus tied rig-
orously to the reduced-order model, whereas the POD is based purely on snapshot data. In both cases, how-
ever, the definition of the error is limited to a discrete set of observations.

The second and third terms in (22) are regularization terms that penalize the deviation of the basis vectors
from an orthonormal set, with b as a regularization parameter. This regularization acts only in the null space
of the projected Hessian matrix of the first term of (22). Therefore, the reduced output approximation, ĝ, is
unaffected by the regularization term, yet the conditioning of the optimization problem is improved. Note,
however, that there remains a null space of the projected Hessian matrix that admits arbitrary rotations of
the basis vectors; the optimization method chosen to solve (18)–(21) should therefore be tolerant of singular
projected Hessian matrices. It is also important to note that the optimization problem (18)–(21) is nonlinear
and nonconvex; hence, there is no guarantee that a purely local optimization method will converge to the glo-
bal optimum. As a result, generating the initial guess is very important; strategies to address this issue will be
discussed in the next section.

3.2. Optimality conditions and the reduced gradient

The optimality conditions for the system (18)–(21) can be derived by defining the Lagrangian functional
LðU; ak; kk; lkÞ ¼ 1

2

XS

k¼1

Z tf

0

ðuk � UakÞTH kðuk � UakÞdt þ b
2

Xm

j¼1

ð1� /T
j /jÞ

2 þ b
2

Xm

i;j¼1
i6¼j

ð/T
i /jÞ

2

þ
XS

k¼1

Z tf

0

kkTðUTMkU _ak þ UTKkUak � UTf kÞdt þ
XS

k¼1

lkTðUTMkUak
0 � UTMkuk

0Þ; ð23Þ
where kk ¼ kkðtÞ 2 Rm and lk 2 Rm are Lagrange multipliers (also known as adjoint state variables) that
respectively enforce the state ODE system and initial conditions for the kth sample. The optimality system
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can be derived by taking variations of the Lagrangian with respect to the adjoint, state, and basis vector
variables.

Setting the first variation of the Lagrangian with respect to kk to zero and arguing that the variation of kk is
arbitrary in (0, tf), and setting the derivative of the Lagrangian with respect to lk to zero, simply recovers the
state equation and initial conditions (19) and (20).

Setting the first variation of the Lagrangian with respect to the ak to zero, and arguing that the variation
of ak is arbitrary in (0, tf), at t = 0, and at t = tf, yields the adjoint equation, final condition and definition
of l
� UTMkU _kk þ UTKkTUkk ¼ UTHkðuk � UakÞ; k ¼ 1; . . . ; S; ð24Þ
kkðtf Þ ¼ 0; k ¼ 1; . . . ; S; ð25Þ
lk ¼ kkð0Þ; k ¼ 1; . . . ; S: ð26Þ
Note that, without loss of generality, M is assumed to be a symmetric matrix.
Taking the derivative of the Lagrangian functional with respect to the basis vector variables U yields the

following matrix equation:
dLU ¼
XS

k¼1

Z tf

0

H kðUak � ukÞakT dt þ 2bUðUTU� IÞ þ
XS

k¼1

Z tf

0

½MkUðkk _akT þ _akkkTÞ

þ KkTUkkakT þ KkUakkkT � f kkkT�dt þ
XS

k¼1

MkUlkaT
0 þ

XS

k¼1

MkðUak
0 � uk

0ÞlkT ¼ 0: ð27Þ
The combined system (19)–(20), (24)–(26), and (27) represents the first-order Karush–Kuhn–Tucker optimal-
ity conditions for the optimization problem (18)–(21).
3.3. Solution of the optimization problem

To solve the constrained optimization problem (18)–(21), we choose to solve an equivalent unconstrained
optimization problem in the U variables by eliminating the state variables ak and state equations (19). That is,
we replace min/;aGða;/Þ with min/

~Gðað/Þ;/Þ, where the dependence of a on / is implicit through the state
equations (19)–(20).

We solve this unconstrained optimization problem by a trust-region inexact-Newton-conjugate-gradient
method. That is, we use the conjugate-gradient (CG) method to solve the linear system of equations arising
at each Newton step and globalize by a trust-region scheme (see, for example, [22]). We terminate CG
when any of the three following conditions is satisfied: (1) a negative curvature direction is encountered;
(2) the norm of the residual of the Newton system is brought down to a sufficiently small value relative
to the norm of the gradient; or (3) the Newton step iterate exits the trust region. This method combines
the rapid locally-quadratic convergence rate properties of Newton’s method, the effectiveness of trust region
globalization for treating ill-conditioned problems, and the Eisenstat–Walker idea of preventing oversolving
[23].

The gradient of the unconstrained function Ĝ with respect to /, as required by Newton’s method, can be
computed efficiently by an adjoint method. The gradient is given by dLU when the ak satisfy the state equa-
tions and (kk,lk) satisfy the adjoint equations. The procedure to compute the gradient can therefore be sum-
marized as follows. First, solve the state equations (19), (20) to determine ak(t). Second, solve the adjoint
equations (24)–(26) to determine kk(t) and lk. Finally, use the computed ak, kk, and lk in (27) to determine
the gradient. The Hessian-vector product as required by CG is computed on-the-fly; because it is a directional
derivative of the gradient its computation similarly involves solution of state-like and adjoint-like equations.
Therefore, the optimization algorithm requires solution of a pair of state and adjoint systems at each CG iter-
ation. Note that the state and adjoint equation each consist of S uncoupled ODE systems, each corresponding
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to one instance of the parameter. For more details on Newton–Krylov methods for solution of simulation-
constrained optimization problems and the associated computational cost, see [24].

3.4. Basis computation

The formulation defined by Eqs. (18)–(21) provides a mathematical definition of the desired optimal basis;
however, in practice this optimization problem may not be tractable for large-scale problems. First, we may
not be able to afford storage of the entire time history for the full model, which leads us to adopt a snapshot-
based approach. As in the POD, accurate numerical approximation of the time integrals in (18) can be
replaced by summation over a more coarsely sampled subset of time instants. Our method therefore requires
a priori computation of a set of high-fidelity solutions over a pre-determined set of time instants and input
parameter values.

Second, even with this simplification, the number of optimization variables is equal to mN — the desired
number of basis functions multiplied by the length of each basis vector — where for many applications
N P O(106). Therefore, it will be assumed that each basis vector can be represented as a linear combination
of snapshots,
/j ¼
XST

i¼1

cj
i U i; j ¼ 1; . . . ;m; ð28Þ
where the coefficients cj
i are the variables in the modified optimization problem. This approximation reduces

the number of optimization variables from mN to mST; for large-scale applications, typically ST� N. As a
consequence, neither the gradient computation nor the optimization step computation (which dominate the
cost of an optimization iteration) scale with the full system size N. Approximating the basis vectors as a linear
combination of snapshots is motivated by the singular value decomposition (SVD) theory underlying the
POD, for which the relation (28) is exact (this is equivalent to solving the inner versus the outer SVD
problem).

Eq. (28) can be written in matrix form as
U ¼ UC; ð29Þ

where cj

i is the ijth element of C 2 RST�m. Gradients of the objective function with respect to C are related sim-
ply to gradients with respect to U by
oL

oC
¼ UT oL

oU
: ð30Þ
The modified optimization formulation offers no guarantees of convexity and the choice of initial guess for the
basis is thus very important. In this paper, we present two possible strategies. The first is to use the POD basis
as an initial starting point. Since a snapshot set is required anyway, the additional cost of computing the POD
basis is small. A second strategy is to employ continuation on the basis dimension. In this approach, the initial
guess for the case of m basis vectors is chosen to be the solution of the optimization problem for m � 1 basis
vectors plus an arbitrary mth vector. This iterative procedure can be initialized at any value m P 1 with the
POD basis vectors as an initial guess on the first iteration.

4. Results

Results are presented for two examples. The first example is a simple heat conduction model problem of
moderate dimension that permits detailed assessment of the optimized basis methodology. The second exam-
ple is a large-scale CFD problem that clearly demonstrates the advantages of the new method over the POD.

4.1. Heat conduction example

Results are presented for a simple model problem that considers the two-dimensional time-dependent heat
equation with boundary temperature inputs. The initial-boundary value problem is given by



Fig. 1.

T. Bui-Thanh et al. / Journal of Computational Physics 224 (2007) 880–896 887
o�u
ot
� jr2�u ¼ 0 in X; ð31Þ

�u ¼ �uc on Cc; ð32Þ
�u ¼ 0 on CD; ð33Þ
o�u
on
¼ 0 on CN; ð34Þ

�u ¼ �u0 in X for t ¼ 0; ð35Þ
where �uðx; y; tÞ is the temperature field defined on the domain X, j is the thermal diffusivity, �ucðx; yÞ is the
boundary control function (which is assumed to be constant in time) applied on the boundary Cc, CD and
CN are Dirichlet and Neumann boundaries, respectively, and �u0ðx; yÞ is the given initial temperature field.
The output of interest is the temperature over a specified sub-region of the domain.

Spatial discretization is by linear triangular finite elements, yielding a dynamical system of the form (8)–
(10), where uk(t) represents the spatially discretized temperature field corresponding to forcing input fk, and
gk(t) contains those elements of uk that lie within the specified region of interest. Fig. 1 shows the problem
domain X and corresponding mesh that was used. Results are presented for a discretization containing
N = 480 temperature unknowns. The specified initial condition is u = 0 at t = 0, and time integration is by
implicit Euler with a constant time step over the time interval (0, tf). Note that the adjoint equation is marched
backward in time. The boundary control is applied on Cc = {(0, y) : 0 6 y 6 3}, i.e., Dirichlet control on the
left boundary of the domain. A Neumann boundary condition is specified on CN = {(3, y) : 1.5 6 y 6 3}, and a
homogeneous Dirichlet condition is imposed on the remaining part of the boundary, CD.

Snapshots were generated by solving the system under different boundary forcing conditions. The forcing
was generated by applying a temperature distribution along the boundary Cc. For the results presented here,
the forcing functions considered were parameterized by sinusoidal distributions with varying spatial fre-
quency. Snapshots were generated over S = 5 instances of the control parameter forcing with T = 20 time
instants for each parameter instance. Using the optimization formulation (18)–(21), we seek the m basis func-
tions that minimize the error defined by (18) while satisfying the reduced-order state equations for each control
instance. The basis functions are assumed to be a linear combination of available snapshots; hence there are
mST = 100m basis function variables in the optimization problem. The state and adjoint equations each con-
sist of S = 5 uncoupled ODE systems of dimension m.

4.1.1. Optimized basis performance

For the first set of results, the output of interest is defined to be the temperature over a strip of the domain
in the region 0.5 < x < 1.0, 0.5 < y < 2.5, yielding an output vector of size Q = 47. Fig. 2 shows values of the
resulting objective function (22), i.e. the error in the outputs, for bases ranging in size from m = 1 to m = 10.
Fig. 2 also shows the values of (22) for the POD bases over this range of m. It can be seen clearly that the
Problem domain and boundary conditions for heat conduction example: Neumann on right side, Dirichlet on all other boundaries.
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Fig. 2. The output error between reduced and full-order models (22) versus number of modes for the goal-oriented optimized basis, the
POD basis, and balanced truncation applied to the heat conduction example.

888 T. Bui-Thanh et al. / Journal of Computational Physics 224 (2007) 880–896
optimized basis outperforms the POD in all cases, particularly when m is small. For larger reduced models,
m > 10, the POD resolves the temperature field very accurately, since the first 10 POD eigenvalues contain
over 98% of the snapshot energy, that is ð

P10
i r2

i Þ=ð
P100

i r2
i Þ > 0:98. In these cases, the optimized basis does

not provide an improvement over the POD.
In order to provide a quantitative metric by which to judge the performance of the optimized basis, bal-

anced truncation was applied to this problem. The problem was converted to standard LTI form by consid-
ering each parametric forcing function as an independent input. Fig. 2 plots values of (22) for truncated
balanced models of size m = 1 through m = 10. It can be seen that in most cases the optimized basis provides
a substantial improvement over POD when both are compared to the results of balanced truncation. It is also
important to note that balanced truncation uses both a left and a right projection basis, and thus has twice as
many degrees of freedom as the goal-oriented optimized basis.
4.1.2. Comparison with POD

A significant advantage of the goal-oriented approach is that the basis can be optimized with respect to a
particular output functional, whereas the POD seeks to minimize the reconstruction error over all states. Sev-
eral different output definitions were considered in order to gain insight into the optimized basis results.

If the output considered is to minimize the error of state prediction over the entire domain, that is, Hk = 1
in (22), then the goal-oriented approach seeks to minimize the same error as the POD. However, it is impor-
tant to note again the difference in the representation of the term ~uj, which for POD is computed directly from
the known solution uj, i.e. ~uj ¼ UUTuj. In this sense the POD is a purely data-based method that does not
account for the underlying governing equations. In contrast, our method computes ûj in (22) by requiring
the solution to satisfy the governing equations in the reduced-order space.

Results for this case are shown in the first row of Table 1. Using the POD basis as an initial guess, the opti-
mizer makes little improvement in the objective function. As shown in Table 1, the reduction in the error is just
1%. For different values of S, T and m, the POD basis is found to be almost optimal with respect to state
reconstruction error for this example. Due to the symmetry properties of the system (M and K are symmetric
matrices), any congruent basis transformation, such as the POD, is guaranteed to preserve the stability of the
system. Thus we expect that the POD should perform well on this heat conduction example. As the results



Table 1
Comparison of optimization results for the heat conduction example. The objective function given by (22) is evaluated for the optimized
basis ðGoptÞ and the POD basis ðGpodÞ
Minimize prediction error over S T m Gopt Gpod

All states 5 20 5 28.9829 29.2762
x = 0.625, y = 0.625 5 20 5 2.9038e�3 0.01066
0.5 < x < 1, 0.5 < y < 1 5 20 5 0.01282 0.1932
0.5 < x < 1, 0.5 < y < 2.5 5 20 5 0.5555 0.8062
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show, the additional error from solution of the governing equations in the reduced space is not significant in
this case. As the next example will show, in more complicated problems the optimized basis can provide an
advantage over the POD even for full state reconstruction, particularly in the case of non-symmetric systems
for which the POD basis can routinely produce unstable reduced-order models.

Table 1 shows the results for other outputs corresponding to various specified output regions (and thus dif-
ferent weightings H in the objective function (22)). Note that the POD basis is computed in the standard way
and thus is insensitive to the choice of output functional. The values in the column Gpod represent the standard
POD basis evaluated using the criterion defined by (22) for each different instance of H (i.e. the metric Gpod is
case-dependent). It can be seen that by targeting an output functional, the goal-oriented basis can yield sub-
stantial improvements in errors over the POD basis. It should be emphasized that our method does not simply
‘‘ignore’’ states that lie outside of the region of interest, since ûj is computed by solving the reduced-order
equations over the entire domain. Therefore the basis must represent all states—but the optimization formu-
lation allows the basis energy to be focused appropriately to achieve the desired objective. One might draw
conceptual parallels between this approach and goal-oriented a posteriori error estimates to drive grid
adaptivity.

Fig. 3 shows the output errors in the case of an output functional defined over the region 0.5 < x < 1,
0.5 < y < 1. Each plot in the figure corresponds to one of the grid points that lie within the region of interest
(for clarity, just four of the nine points are shown). The first T = 20 snapshots correspond to the first instance
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Fig. 3. Error in temperature prediction for each snapshot using POD and optimized basis. The optimized basis was selected to minimize
the error over the region 0.5 < x < 1, 0.5 < y < 1. Errors are shown for four of the nine points contained within this region.
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of control forcing, the second T = 20 correspond to the second instance, and so on. The figure shows that for
almost every snapshot in the ensemble, the optimized basis results in a more accurate prediction of the tem-
perature at the point of interest. In many cases, the error is reduced by almost an order of magnitude.

The reduced output errors shown in Fig. 3 come at a cost. Fig. 4 shows the norm of the errors computed
over the entire domain for each snapshot. In order to reduce the errors at the specified points, the optimized
basis yields less accurate predictions for other states. However, it is again important to note that this trade-off
in accuracy is done in a systematic way using both the governing equations and the defined output functional.
According to the optimization result, the larger errors observed in other areas of the domain are compatible
with the task of reducing the error in the region of interest.

4.2. Subsonic rotor blade example

The second example considers forced response of a subsonic rotor blade that moves in unsteady rigid
motion. The flow is modeled using the two-dimensional Euler equations written at the blade mid-section.
In this case the governing PDEs are given by
Fig. 4
optimi
ow
ot
þr �FðwÞ ¼ 0; ð36Þ
where w(x,y, t) is the conservative state vector,
w ¼ ðq; qu; qv; qEÞT; ð37Þ

and F ¼ ðF x; F yÞ is the inviscid Euler flux,
F x ¼ ðqu; qu2 þ P ;quv; quHÞT;
F y ¼ ðqv; quv; qv2 þ P ; qvHÞT: ð38Þ
In the above equations, q is the density, u and v are respectively the x- and y-component of velocity, E is the
total energy, P is the pressure, and H = E + P/q is the total enthalpy. The equation of state is the ideal gas law
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P ¼ ðc� 1Þ qE � 1

2
qðu2 þ v2Þ

� �
; ð39Þ
where c is the ratio of specific heats.
The geometry of the blade is shown in Fig. 5 along with the unstructured grid for a single blade passage,

which contains 4028 triangular elements. The Euler equations (36) are discretized in space with a discontinu-
ous Galerkin (DG) method, as described in [25]. To solve the forced response problem of interest here, the
steady-state solution is first obtained by solving the discretized nonlinear system of equations. For the case
considered here, the incoming steady-state flow has a Mach number of M = 0.113 and a flow angle of
b = 59�. Flow tangency boundary conditions are applied on the blade surfaces. Since the rotor is cyclically
symmetric, the steady flow in each blade passage is the same and the steady-state solution can be computed
on a computational domain that describes just a single blade passage. Periodic boundary conditions are
applied on the upper and lower boundaries of the grid to represent the effects of neighboring blade passages.

A linearized model is derived for unsteady flow computations by assuming that the unsteady flow is a small
deviation from steady state. The details of the unsteady DG method are given in Bui-Thanh et al. [26]. Lin-
earization of the unsteady Euler equations about the steady state yields a linear time-invariant system of the
form (1)–(3), where the state vector, u(t), contains the unknown perturbation flow quantities (density, Carte-
sian momentum components and energy). For the DG formulation, the states are the coefficients correspond-
ing to each nodal finite element shape function. Using linear elements, there are 12 degrees of freedom per
element, giving a total state-space size of N = 48336 per blade passage. For the problem considered here,
the forcing input, f(t), describes the unsteady motion of the blade, which in this case is assumed to be rigid
plunging motion (vertical motion with no rotation). The output of interest, g(t), is the unsteady lift force gen-
erated on the blade. The initial perturbation flow is given by u0 = 0.

Using the linearized Euler equations reduces the complexity and computational time of unsteady calcula-
tions considerably. In particular, in the linearized setting, unsteady computations can be done on a single
blade passage in the frequency domain, using symmetry arguments and complex periodicity conditions to
account for the effects of neighboring blade rows. However, the model for a single blade passage has dimen-
sion N = 48336, and solution of the linearized equations can be too costly for many applications, such as aero-
elastic analyses, which require coupling of a fluid dynamic and structural model, and analysis of the effects of
blade mistuning, which is the case when all blades in the rotor are not identical. When mistuning exists, sym-
metry can no longer be exploited in the frequency domain and unsteady computations must be carried out on
Fig. 5. Geometry and CFD mesh for a single blade passage.
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the full rotor, which for this example has 56 blades. The goal is therefore to create a reduced-order model that
accurately represents the dynamic relationship between blade motion and lift force.

Snapshots were taken by computing the response of the blade to a pulse input in plunging motion. For this
input, the blade vertical position as a function of time is given by
Table
The ob
examp

Numb

1
2
3
4
5
6
7
8
9

10
11
12
13
14
hðtÞ ¼ �he�gðt�t0Þ2 ; ð40Þ

where the parameters �h ¼ 1, g = 0.02, and t0 = 40 were chosen based on the range of motions that are ex-
pected in practice, and all quantities are non-dimensionalized with the blade chord as a reference length
and the inlet speed of sound as a reference velocity. The unsteady simulation was performed with a time step
of Dt = 0.1 from t = 0 to tf = 200. A set of POD basis vectors was computed from this collection of 2000 snap-
shots. POD reduced-order models were then obtained by projecting the linearized Euler equations onto the
subspace spanned by the POD basis vectors, for various basis sizes.

Although the POD is very commonly used for fluid dynamic applications such as this one, an important
limitation is highlighted by the results shown in Table 2. The table shows the value of the cost functional
defined by (18) for each of the POD-based reduced-order models (note that in this case there is no variation
of parameters, i.e. S = 1). Using this set of snapshots to compute the POD basis and then applying the pro-
jection as in (4) and (5) results in unstable POD-based reduced models for bases of size 1 through 10. That is,
for m 6 10, one or more of the generalized eigenvalues of the system (5) has negative real part. As a result, the
magnitudes of the state vectors û computed with these unstable models grow in time, and thus the magnitude
of first term of the cost functional in (22) approaches infinity. Even though the POD basis is optimal in the
sense that it provides the most efficient representation of the given snapshot set, the results in Table 2 empha-
size that this optimality is not related to the quality of the resulting reduced-order model. For this example, the
POD basis provides satisfactory models if a larger number of states is used (for example, the error with m = 11
states is considered to be acceptable). Modification of the snapshot set might yield better POD-based reduced
models. A set of POD-based reduced models was also created using a step input to generate the snapshots. In
this case, the POD-based reduced models were again found to be unstable for most choices of the basis size.
Improvements to the POD-based models could possibly be achieved by further ad hoc modification to the
snapshot set.

The goal-oriented, model-constrained optimization reduction methodology was applied to this example for
a similar range of basis sizes evaluated with the POD. In each case, a continuation in the parameter m was
used to initialize the optimization. The set of 2000 snapshots was first reduced to a set of 19 vectors using
SVD. Then, as described by (28), we seek the optimal basis that is a linear combination of these vectors. This
compression greatly reduces the size of the optimization problem without a significant loss of information,
since in this case 19 vectors are sufficient to represent the information contained in the snapshot set. Although
2
jective function given by (22) for POD-based reduced-order models generated using a pulse plunge displacement input for the blade
le

er of POD basis vectors Gpod

Unstable
Unstable
Unstable
Unstable
Unstable
Unstable
Unstable
Unstable
Unstable
Unstable
3.78e�09
2.16e�10
6.08e�11
6.58e�12
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we chose to reduce the number of degrees of freedom in the optimization problem, the objective function (18)
is defined over the full set of 2000 solutions used to generate the snapshots. For this example, the a priori

reduction of the snapshot set works well; however, there is no guarantee that the smaller set will be suffi-
ciently rich to yield an accurate reduced model. In particular, for nonlinear systems, discarding information
may be problematic if states that appear unimportant via the SVD analysis are needed to obtain an accurate
reduced basis. Defining the error term in (18) over all solutions helps to identify such cases, as the optimizer
will be unable to reduce the objective function to a sufficiently low value with the available degrees of
freedom.

Fig. 6 shows the values of the cost functional (18) versus the number of modes, using the optimized basis
vectors. The plot does not show a comparison with the POD-based models, since those models are all unstable
for this range of basis functions and the corresponding cost functional values are extremely large. It can be
seen that, by attempting to reduce the difference between full-order and model-constrained reduced-order out-
puts, the optimization approach not only yields a stable reduced model, but also provides very accurate
response over the specified range of behavior. The reduced-order output matches the full-order output very
accurately with a low number of states. For example, comparing the results in Fig. 6 with those in Table 2,
it can be seen that the accuracy of the 7th-order optimized reduced model is comparable to that obtained with
an 11th-order POD model.

Balanced truncation was also applied to this example; however, we were not able to obtain satisfactory
results. The large dimension of the system precludes use of a balancing method that employs dense matrix
algebra, such as that in the SLICOT library [27]. Approximate balancing can be achieved for problems of this
size using sparse iterative methods such as the low rank square root method [28] implemented in the Lyapack
toolbox [29]. However, application to this example of the Lyapack approximate balanced truncation method
with the default settings resulted, as for the POD, in unstable reduced-order models. The Lyapack users’ man-
ual suggests experimentation with different parameter combinations until the reduced model is stable [29].
Using this ad hoc approach, we were able to obtain stable approximate balanced truncation models, but
the quality of the models was extremely poor.

Fig. 7 shows simulation results for a pulse with �h ¼ 1, g = 0.02, and t0 = 40 (i.e. the same parameters used
to generate the reduced model). With just m = 3 states in the reduced model obtained using the optimized
basis, there is a small discrepancy between the full-order and reduced-order outputs. With m = 8 reduced
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states, the results are indistinguishable. Fig. 8 shows the eigenvalues of the unstable POD reduced model with
eight basis vectors and its stabilized counterpart computed using the optimized basis. It can be seen that the
spectra of the models differ widely.
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5. Conclusions

The goal-oriented, model-constrained optimization approach presented here provides a general framework
for construction of reduced models, and is particularly applicable to optimal design, optimal control and
inverse problems. The optimization approach provides significant advantages over the POD by targeting
the projection basis to output functionals of interest, by providing a framework in which to treat multiple
parameter instances, and by incorporating the reduced-order governing equations as constraints in the basis
derivation.

Selection of an appropriate snapshot set remains an open issue that is not addressed by the model-con-
strained optimization approach presented in this paper. Like the POD, the quality of the optimized basis
depends on the richness of information contained within the available snapshots. For large-scale problems,
increasing the size of the snapshot set may increase the computational demands of determining the optimized
basis, since the dimension of the optimization variables scales linearly with the number of snapshots. However,
when an adjoint-based matrix-free Newton-conjugate-gradient method is used to solve the optimization prob-
lem (as in this paper) the number of iterations, and thus the cost of solving the optimization problem, scales
linearly with the number of dominant modes, as opposed to the number of available snapshots. Even in the
case when the number of dominant modes is large, solution of the optimization problem remains tractable,
since each conjugate-gradient iteration requires forward and adjoint solves of just the reduced model, and
not the full-scale model.
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